Puzzling mid-infrared spectra of lithium-rich K giant stars

R. de la Reza¹, N. A. Drake^{1,2}, I. Oliveira, S. Rengaswamy^{3,4}

 ¹ Observatório Nacional - MCTI, Rio de Janeiro, Brazil
² Saint Petersburg State University, Saint Petersburg, Russia
³ European Southern Observatory, Santiago, Chile
⁴C4C/115, Janak Puri, New Delhi, India

Future Prospects for Far-Infrared Space Astrophysics July 5-7, 2016, Athens, Greece

Spectra in the regions of the Li I lines at 6104 and 6708 Å

First discovery: Wallerstein & Sneden (1982) Gregório-Hetem et al. (1993): large majority of Li K giant stars are IR sources measured by *IRAS*.

de la Reza et al. (1996, 1997): scenario linking Li enrichment to the evolution of circumstellar shells

Drake et al. (2002): among rapid rotating (vsin i ≥ 8 km/s) K giants about 50% are Li-rich

"Li excess in K giants is one of the most puzzling stellar astrophysical problems to which, in the last two decades, great deal of research has been devoted" (Kumar & Reddy, 2009)

Spitzer mid-IR spectra of Li-rich K giants

Mid-IR spectra between 5 and 38 μ m of RGB Li-rich K giants PDS 365, PDS 100, PDS 68, and IRAS 17596-3952 presenting the UIE features superposed to a strong adjacent continuum emission.

A log-log form is presented here for stars PDS 365 and PDS 100 to highlight the emission feature at 6.26 μ m

Cornell Atlas of Spitzer/IRS sources (CASSIS, Lebouteiller et al. 2011)

Distribution of IR excesses of K giant stars

Filled symbols – Li-rich K giants Open symbols – Li-poor K giants Red – Li-rich giants presenting UIE features Blue – no UIE

Results

We detected several emission lines related to hydrocarbon organic and inorganic materials in the Spitzer mid-IR spectra of seven K giant stars (five RGB stars and two early-AGB stars) superposed to a strong underlying continuum emission

The hydrocarbon organic compounds (aromatic and aliphatic components) are supposed to be formed in the winds of the expanding shells (without the presence of a strong UV radiation fields?)

The wind-disk interaction model – a nonspherical geometry – optical polarization signals We expect that the wind-disk interaction could be detected by directly imaging with ALMA

If episodic Li-enrichment process is indeed a universal phenomenon, we are facing a new source of organics in the ISM

Ramiro de la Reza, Natalia Drake, Isa Oliveira, Sridharan Rengaswamy "Complex Organic and Inorganic Compounds in Shells of Lithium-rich K Giant Stars", ApJ, 806, 86 (2015)

Stellar Properties and Spectral Emission Features

Table 1 Stellar Properties and Spectral Emission Features						
Star	Number in Figure 1	Evolution Phase	$T_{\rm eff}$. K	$\log\epsilon(\rm Li)$	$\log L/L_{\odot}$	Emission Features (µm)
HD 233517	15	RGB	4390	4.3	2.03ª	6.26 ^b A, 8.2 ALP?, 11.3 ^b A, 12.7 ALP?
PDS 365	30	RGB	4540	3.3	1.86°	6.26 A, 8-9 ALP, 20.0 F/E?, 34.0 F/E?
IRAS 17596-3952	62	RGB	4600	2.30	1.70 ^{a,d}	8.3° Si?, 20.0 F/E ?, 34.0 F/E ?
PDS 100	74	RGB	4500	2.40	1.65 ^{a,f}	6.26 A, 11.4 A, 19.0 F/E?, 23.5 F/E?, 28.0 F/E?, 33.0 UIE
PDS 68	34	RGB	4300	3.9-4.2	1.60 ^{a,d}	10.0 ^g CE, 12.7 ALP, 19.5 ^g CE, 28.3 ^g CE
IRAS 17582-2619	60	EAGB?		~1.40		8.7 ALP
IRAS 12327-6523	27	EAGB	4200	1.4-1.6	2.91 ^d	10.0 AM, 18.5 AM

Notes. Abbreviations: A-aromatic; ALP-aliphatic plateau; F-forsterite; E-enstatite; Si-silica; CE-crystal enstatite; AM-amorphous inorganic compound; UIE-unidentified infrared emission.

^a Strassmeier et al. (2015).

^b Jura et al. (2006).

^c Drake et al. (2002).

^d Reddy & Lambert (2005).

e Juhász et al. (2010).

f Reddy et al. (2002).

g Olofsson et al. (2009).