Multiple outflows, disk and jets in the S255 area of high mass star formation

Igor Zinchenko (Institute of Applied Physics of the Russian Academy of Sciences)

Sheng-Yuan Liu, Yu-Nung Su (ASIAA, Taiwan), Peter Zemlyanukha (IAP RAS, Russia),

Outline

- General description of S255
- S255IR-SMA1
 - Kinematics
 - Physical properties
- Morphology and properties of the outflows
- Surroundings
- Very young outflows in the S255N area

S255 star forming region

GMRT 610 MHz (green) and IRAM 30m 1.2 mm (cyan) contours overlaid on the Spitzer 8 µm image

S255IR continuum

Rotating hot core

Zinchenko et al. 2015

High velocity outflow in S255IR

High velocity outflow in S255IR

High velocity outflow in S255IR

The position velocity diagram for the IRAM-30m CO data

Arce et al. 2007

Dense high velocity clump

Grey-scale image – CS(7-6) Contours – CO(3-2)

n > 3 × 10⁶ cm⁻³, gravitationally unbound

Very young outflows in the S255N area

Parameters of the Outflows in S255N-SMA3 and S255N-SMA5 (Mass, Momentum, Energy, Size, Age, Mass Loss Rate, and Mechanical Force)							
Name	$M \ (M_{\odot})$	$\frac{P}{(M_{\odot} \text{ km s}^{-1})}$	E (erg)	Size (pc)	t (yr)	\dot{M} $(M_{\odot} \text{ yr}^{-1})$	$\frac{F}{(M_{\odot} \text{ km s}^{-1} \text{ yr}^{-1})}$
S255N-SMA3 S255N-SMA5	0.003 0.012	0.15 0.36	8×10^{43} 10^{44}	0.009 0.012	200 400	2×10^{-5} 3×10^{-5}	8×10^{-4} 9×10^{-4}

Summary

- The hot (T ~ 150 K) dense (n > 6 10⁸ cm⁻³) core in S255IR-SMA1 probably represents a fragmented (the filling factor ~ 0.2) protostellar disk around the massive (20 M_{\odot}) star with a size of ~500 AU. The mass of the clump is significantly lower than the mass of the central star.
- The CO outflow morphology obtained from combination of the SMA and IRAM-30m data is significantly different from that derived from the SMA data alone. The CO emission detected with the SMA traces only one boundary of the outflow and leads to a rather distorted picture.
- The outflow is most probably driven by jet bow shock. There are signs of episodic ejections.
- The outflow strongly affects the chemical composition of the surrounding medium. The N₂H⁺ molecules are destroyed.
- Very young outflows (a few hundred years only) are detected in the S255N area.

Publications

- I. Zinchenko, S.-Y. Liu, Y.-N. Su, S. V. Salii, A. M. Sobolev, P. Zemlyanukha, H. Beuther, D. K. Ojha, M. R. Samal, and Y. Wang. The Disk-outflow System in the S255IR Area of High-mass Star Formation. The Astrophysical Journal, Volume 810, Issue 1, article id. 10, 18 pp. (2015)
- I. Zinchenko, S.-Y. Liu, Y.-N. Su, S. Kurtz, D. K. Ojha, M. R. Samal, and S. K. Ghosh. A Multi-wavelength High-resolution study of the S255 Star-forming Region: General Structure and Kinematics. The Astrophysical Journal, Volume 755, Issue 2, article id. 177, 19 pp. (2012)

THANKYOU!