On the formation of the largest galaxies in the local Universe

J. Perea J.M. Solanes

Instituto de Astrofísica de Andalucía, Granada, Spain Dep. Física. Quàntica. i Astrofísica, ICCUB. Univ. de Barcelona, Spain

48 groups *O*(5x10⁶ particles)

Ngal=25

Groups: Isolated overdensities. Expand linearlly Non-linear collapse Masses drawn from a Schechter LF (α =-1, M*=10¹²M_.)

Evolution from z=3 to the present epoch

0.29Gyr	0.59Gyr •. •	0.88Gyr	1.18Gyr	1.47Gyr	1.77Gyr	2.06Gyr	2.36Gyr
				· · ·			
2.65Gyr,	2.95Gyr	3.24Gyr	3.54Gyr	3.83Gyr	4.13Gyr	4.42Gyr	4.71Gyr
5.01Gyr	5.30Gyr	5.60Gyr	5.89Gyr	6.19Gyr	6.48Gyr	6.78Gyr	7.07Gyr
7.37Gyr	7.66Gyr	7.96Gyr	8.25Gyr	8.55Gyr	8.84Gyr	9.13Gyr	9.43Gyr
9.72Gyr	10.02Gyr	10.31Gyr	10.61Gyr	10.90Gyr	11.20Gyr	11.49Gyr	11.79Gyr

Growth of a BGG

Luminosity (mass) function evolution 48 groups $O(5 \times 10^6 \text{ particles}) \text{ Ngal}=25$

Stacked luminosity function.

Hump at the high end mass. Dearth at intermediate masses (same position as GEMS or HCGs)

Continous interaction results in a magnitude gap between the two brightest galaxies. Its extent matches that observed in real groups

The total stellar mass associated to galaxies in the final groups is found to be smaller than that at z=3,

An intragroup mass component appear. For our groups it amounts for at most 10% of the total stellar mass.

Sérsic profile: Ellipticals, end product of multiple mergers.

A few cases (low mass) are the results of tidal interaction via minor merging.

The coefficients match the slopes and normalization to the observations of low-z ellipticals

BGGs follow a well defined fundamental plane

log R_e = (1.60 ± 0.05) log
$$\sigma_e$$
 +
+ (0.75 ± 0.02) µe /2.5 - 8.0 ± 0.2 ,

Our simulations of previrialized groups provide evidence of the viability of hierarchical collisionless merging as a route to the formation of BGG

Models reproduce well the main global properties of galaxies and their parent groups. Among others,

- Luminosity function evolution
- ΔM_{12}

IGL

- Sérsic index
- Fundamental plane

Mass-Radius

FJ relation