An X-ray outflow in a luminous obscured quasar at z=1.6 in the CDF-S
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Abstract

In the AGN-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop
growing at a certain phase of their life. Evidences for ultra-fast outflows in X-rays have been collected in the last decade of sensitive XMM-Newton,
and Suzaku observations for a sizable sample of AGN, mostly at low redshift. Here we present deep XMM-Newton and Chandra data of an
obscured (Ny=a fewx1022 cm-2) luminous (L, ,qev~a fewx 104 erg/s) quasar at z=1.6 in the Chandra Deep Field-South (CDF-S), where an outflow
with velocity v, =0.14c has been significantly detected.

X-ray outflows

Over the last decade, ultra-fast outflows (UFOs, with velocities typically up to 0.1-0.4c) have been clearly detected in X-rays in a sizable sample
of AGN, both at low (e.g., Reeves et al. 2003; Pounds & Reeves 2009; Tombesi et al. 2010, 2012; Gofford et al. 2013; Nardini et al. 2015;
Tombesi et al. 2015) and high redshift (e.g., Chartas et al. 2002, 2007, 2014; Saez et al. 2009; Lanzuisi et al. 2012). These powerful outflows may
provide significant feedback on the quasar host galaxy (e.g., King 2010) and may be responsible for both quenching the star-formation phase and
setting up the local Magorrian relation.

Here we present the intriguing properties of source PID352 (as classified in the XMM-Newton source catalog in the Chandra Deep Field-South
(XMM-CDFS; Ranalli et al. 2013). Both XMM-Newton and Chandra spectral data (taken over a =10 yr interval) show the presence of an iron line
emission and absorption features. No redshift was available prior to this work. We associated the emission line to neutral iron Ka emission - thus
setting z=1.6 (lately confirmed by a Keck spectrum) — hence the absorption feature is associated to outflowing highly ionized gas with v ,~0.14c.
The source is also coincident with a red galaxy placed at the core of a double-lobe Fanaroff-Riley Il galaxy. PID352 represents one of the few
quasars at high redshift with a detected UFO without being lensed.

2a for the XMM redshift solution) in case of emission line associated to the neutral FeKa transition. J(
Lately, a redshift z=1.61 was obtained by a Keck near-IR spectrum (Fig. 2b) on the basis of the detectiol
of [Olll] and Ha lines. For what concerns the absorption feature (Fig. 2¢), Monte Carlo simulations / \
indicate that there is 1% probability for this line to be spurious. However, the presence of such feature ‘ absorption fine
also in Chandra spectrum provides further support to this detection. The EW of the emission and
absorption lines are =200 eV. The best-fitting XMM-Newton spectrum is shown in Fig. 3.
To characterize the outflowing wind, we used XSTAR (Bautista & Kallman 2004). The relatively large 2 Ener 5
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rest-frame EW of the iron absorption feature, combined with the curve of growth for highly ionized iron Fig. 1 Observed 1.37 keV band spectrum of
transitions (Tombesi et al. 2011), suggests the need for high turbulent velocities; v,,,=5000 km/s was PID352 divided by the best-fitting powerlaw
then chosen. The resulting column density of the ionized gas and its ionization parameter are in the model (with a flat photon index). The spectral
range N,;=[0.6-5.3]x1023 cm? and Logg=[2.5-4.4] erg cm/s. The derived outflow velocity due to highly data were made by combining the XMM-Newton
ionized iron (FeXXV Hea at 6.7 keV/FeXXVI Lya at 6.97 keV) is v,,,=[0.08-0.16]c. The mass outflow rate EPIC pn, MOS1, MOS2, and Chandra ACIS-|
is close to the accretion rate of 1.7 Mg/yr derived considering the AGN bolometric luminosity of =10 erg/s fizt.iagf.nmffé %E‘r’:m spectral features are
from SED fitting. The full list of derived parameters for PID352 is shown in Table 1.

XMM-Newton and Chandra results Fig. 1 emission line
The XMM-Newton pn+MOS and Chandra ACIS-I spectra of PID352, once fitted with a flat powerlaw, o

show a clear emission+absorption line complex (Fig. 1). Given the absence of a spectroscopic redshift H H +

for this source prior to this work (z,,,=1.52+0.34/-0.20 at the 95% c.I. from Taylor et al. 2009), we used % H }\ JHLJ{ JFJF +

the emission line to constrain the source redshift. The derived redshift is z=1.59+0.03 (90% c.l.; see Fig. L HHH HHH J( + ‘\‘%
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Fig. 2 (a) Redshift solution (obtained using the iron emission line and the absorption edge) vs. line normalization derived using XMM-Newton data. The redshift z=1.59+0.03,
confirmed by Chandra analysis, is consistent with the spectroscopic redshift z=1.61 obtained from Keck (courtesy of G. Hasinger and collaborators; panel (b)). (c) Absorption line
energy vs. normalization. Contours in panels (a) and (c) represent the 68, 90 and 99% confidence level.
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