

Is the Blazar Sequence related to accretion disk winds?

Stella Boula^{1*}, Apostolos Mastichiadis¹, Demosthenes Kazanas²

¹Department of Physics, University of Athens, Zografos Greece ²NASA Goodard Space Flight Center, Laboratory for High-Energy Astrophysics

*stboula@phys.uoa.gr

The Model

The kinetic equation for electrons is described by

$$\frac{\partial n_e(\gamma, t)}{\partial t} + \frac{n_e(\gamma, t)}{t_{esc}} = Q_{e,inj} + L_e$$

where n_e is the differential electron density and Q_e , L_e are the injection and energy loss operations for electrons respectively. These are defined as

$$Q_{e,inj} = \begin{cases} k_{e_1} \gamma^{-p} & \text{for } \gamma_{min} \leq \gamma \leq \gamma_{br} \\ k_{e_2} \gamma^{-q} e^{-\gamma/\gamma_{max}} & \text{for } \gamma_{br} \leq \gamma \leq \gamma_{max}, \end{cases}$$
$$\gamma_{max} = \frac{3m_e c^2}{4\sigma_\tau c t_{acc} U_{tot}},$$
$$L_e = \frac{4}{3m_e c^2} \frac{\sigma_\tau}{\partial \gamma} [\gamma^2 n_e(\gamma, t) U_{tot}],$$

where $\gamma_{br} = 0.1 \gamma_{max}$ and U_{tot} the total energy density. This is given by

$$U_{tot} = U_B + U_{ext} + U_{ssc}$$

The acceleration time t_{acc} is defined from the first order Fermi acceleration as

$$t_{acc} = \tau_{FI} \ge \frac{6\gamma m_e c}{eBu_*^2}$$

where u_s the velocity of the shock.

The wind's particle density is

$$n = n_0 \frac{r_0}{r}$$

where $r_0 = r_s$, $n_0 = \frac{\eta_w \dot{m}}{2\sigma_\tau r_s}$, $\dot{m} = \frac{\dot{M}}{\dot{M}_{Edd}}$ the mass rate normalized to Eddington mass rate, r_s is Schwartzchild radius, η_w the ratio of the mass-outflow rate in the wind to the mass-accretion rate \dot{m} , asumed here to be $\eta_w \simeq 1$ and σ_τ the Thomson cross section. Photons from the accretion disk could be scattered on wind particles. We assume a sperical region between radii R_1 and R_2 , therefore the optical depth in first order is

$$\tau_{\tau} = \int_{R_1}^{R_2} n(r) \sigma_{\tau} dr = n_0 \sigma_{\tau} \ln \frac{R_2}{R_1}$$

In the case of τ_{τ} << the photon energy density of the scattered accretion disk photons up to distance R_2 is

$$U_{ext} = \frac{\eta_{ext} L_{acc} \tau_{\tau}}{4\pi R_2^2 c},$$

where η_{ext} the radiation to accretion efficiency, $L = \epsilon \dot{m}^2 L_{\odot} \hat{M}$ the ionizing luminosity from the disk and $L_{\odot} = 1.3 \times 10^{38} M_{\odot} erg \ s^{-1}$ is the Eddington luminosity, ϵ is the effisiency of conversation os mass into radiation for $\dot{m} = 1$ and $\hat{M} = \frac{M}{M_{\odot}}$, where M_{\odot} is one solar mass.

Fukumura et al, ApJ 715, 2010

Mastichiadis & Kirk, A&A 295, 1995

