

Formation and early evolution of star clusters with the Gaia-ESO Survey

Giuseppe Germano Sacco

INAF-Osservatorio Astrofisico di Arcetri

The Gaia-ESO Survey: overview

<u>Aim</u>: provide complementary data to Gaia (RV, vsin *i*, *Teff*, *log(g)*, *chemical abundances*) by high resolution spectroscopy

Science goals:

- •Galaxy chemo-dynamics
- •Cluster formation and evolution
- •Stellar evolution

(Gilmore et al. 2012, Randich & Gilmore 2013)

Time & people	<u>Sample</u>	<u>Instrument</u>
PIs: G. Gilmore & S. Randich	10 ⁵ stars at R=20,000 (V < 19 mag)	FLAMES@VLT
Co-Is: +400	5000 at R=47,000 (V < 17 mag)	•GIRAFFE (10 ⁵ stars)
Start: 31/12/2011	Milky Way components	(132 fibres at R=20,000)
End: 31/03/2017	Old clusters (age > 100 Myr)	•UVES (10 ⁴ stars)
Nights: 340	Young clusters (age 1-100 Myr)	(8 fibres at R=47,000)

Star clusters dynamics with GES

Open questions:

- 1. What are the physical mechanisms driving the formation of young star clusters?
- 2. How do they dynamically evolve?
- 3. Why do star cluster remain bound or disperse in the field?

Young cluster sample	Target selection	Astrophysical Parameters
Observed cluster: 15	Giraffe : based on	Radial velocities (ΔRV~ 0.3 km
Age range: 1-100 Myr	photometry, common	s ⁻¹)
Distance: 100-2000 pc	strategy for all the clusters	Rotational velocities
High mass and low mass	UVES : priority to know	Stellar parameters (Teff, log g)
clusters	members, aimed at deriving	Accretion and activity indicators
Gas free and embedded	chemical abundances	Chemical abundances

Main results so far

- 1. Discovery of new complex system composed of two clusters with very different dynamical properties that are probably merging (Jeffries et al. 2014, Sacco et al. 2015, Mapelli et al. 2015)
- All observed young clusters are characterized by the presence of multiple kinematic substructure (Jeffries et al. 2014, Sacco et al. 2015, Rigliaco et al. 2016, Sacco et al. in prep.)
- 3. In low-mass embedded cluster the velocity dispersion of the stellar population is much higher than pre-stellar cores (Rigliaco et al. 2016, Sacco et al. in prep.)

More about these results in Symposium 9 "The Dynamics of Star and Planet Formation" on Friday at 9:30