

- Low Resolution program:
 - O and early-B stars
 - late-B and A stars
 - red supergiants
 - Be stars
 - diffuse ISM, PNe, SNR
 - white dwarfs / interacting binaries
 - cepheids
 - young stars / creation of the stellar field

- High Resolution programs:
 - Cygnus
 - Anticentre

Work in progress: example test for A stars

Studying the Milky Way now

Using A-stars as probes of the Milky Way structure - The sample & method $% \left({{{\rm{A}}_{\rm{A}}}} \right)$

- R=4000 HectoSpec spectra of A/F stars at:
 - *I* = 118°, *b* = 2° (473 stars) *I* = 178°, *b* = 1° (271 stars.
 - control) D = 1 (271 stars)
- Wavelength range: 8300-9000Å
- Cross-correlation with templates \Rightarrow RV, T_{eff}, logg, vsini

Using A-stars as probes of the Milky Way structure - Results

RV vs. distance stretched by 1.25 to account for binarity (data points) compared with Galactic rotation models (solid lines)

 $I = 118^{\circ}$

 $I = 178^{\circ}$

Using A-stars as probes of the Milky Way structure - Results

•
$$\begin{bmatrix} mean & mean \\ predicted & observed \end{bmatrix}$$
 $RV = -8.8 \pm 0.9 \text{ kms}^{-1}$
for $4 < d(\text{kpc}) < 5$ with binary stretch

Better understanding to come from comparison with simulated data & Gaia astrometry